Classification images in a very general decision model

نویسنده

  • Richard F. Murray
چکیده

Most of the theory supporting our understanding of classification images relies on standard signal detection models and the use of normally distributed stimulus noise. Here I show that the most common methods of calculating classification images by averaging stimulus noise samples within stimulus-response classes of trials are much more general than has previously been demonstrated, and that they give unbiased estimates of an observer's template for a wide range of decision rules and non-Gaussian stimulus noise distributions. These results are similar to findings on reverse correlation and related methods in the neurophysiology literature, but here I formulate them in terms that are tailored to signal detection analyses of visual tasks, in order to make them more accessible and useful to visual psychophysicists. I examine 2AFC and yes-no designs. These findings make it possible to use and interpret classification images in tasks where observers' decision strategies may not conform to classic signal detection models such as the difference rule, and in tasks where the stimulus noise is non-Gaussian.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the ability of different algorithms and visual interpretation of Google Earth images in the separation and classification of plant ecological units

Background and objectives: Satellite images and remote sensing technology are recognized as efficient and modern tools for extracting information related to earth sciences, which make it possible to evaluate and monitor ecosystems at a lower cost than field methods. One of the most important methods of extracting information from satellite data is various image classification techniques. The pr...

متن کامل

Automatic classification of Non-alcoholic fatty liver using texture features from ultrasound images

Background: Accurate and early detection of non-alcoholic fatty liver, which is a major cause of chronic diseases is very important and is vital to prevent the complications associated with this disease. Ultrasound of the liver is the most common and widely performed method of diagnosing fatty liver. However, due to the low quality of ultrasound images, the need for an automatic and intelligent...

متن کامل

Change Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images

The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...

متن کامل

Application of soil properties, auxiliary parameters, and their combination for prediction of soil classes using decision tree model

Soil classification systems are very useful for a simple and fast summarization of soil properties. These systems indicate the method for data summarization and facilitate connections among researchers, engineers, and other users. One of the practical systems for soil classification is Soil Taxonomy (ST). As determining  soil classes for an  entire area is expensive, time-consuming, and almost ...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Vision Research

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2016